HETEROCYCLES, Vol. 65, No. 6, 2005, pp. 1425 - 1430 Received, 31st January, 2005, Accepted, 14th April, 2005, Published online, 15th April, 2005

REACTIONS OF BIS(SILYL-SUBSTITUTED) METHYLLITHIUM WITH *α*-HYDROGEN-FREE NITRILES INTO 1,3,5-TRIAZINES

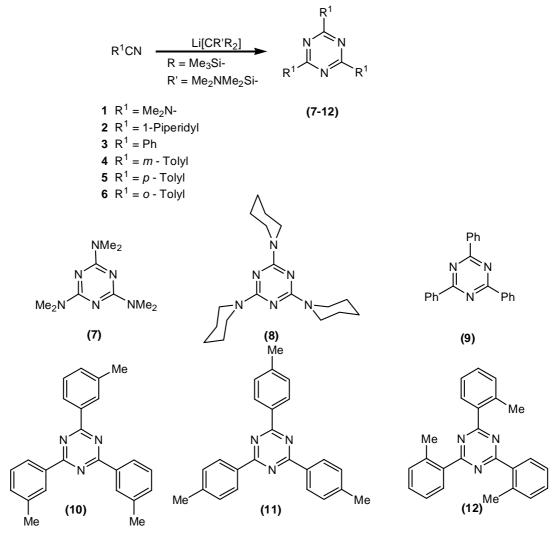
Xia Chen, Sheng-Di Bai, Li Wang, and Dian-Sheng Liu*

The School of Chemistry and Chemical Engineering and The Institute of Modern Chemistry, Shanxi University, Taiyuan 030006, P. R. China

e-mail: <u>chenxia@sxu.edu.cn</u>

Abstract –Bis(silyl-substituted) methyllithium has been found to catalyze a conversion of α -hydrogen-free nitriles directly to yield 2,4,6-trisubsituted *s*-triazines. The generally high yields and relatively mild reaction conditions of this procedure suggest an alternative to other aromatic nitrile cyclotrimerization reactions. Silicotropic rearrangements from C to N or N to N and an unusual elimination of LiCR₂R' (R=SiMe₃, R'=SiMe₂NMe₂) were observed.

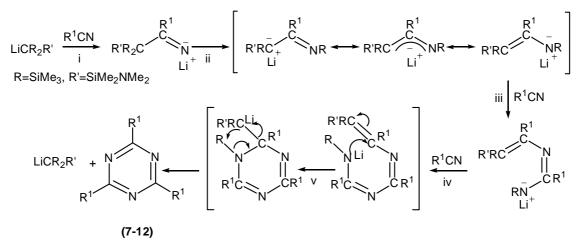
INTRODUCTION


A series of studies on the reactions of Li[CH_{3-n}R_n] (n=1, 2, or 3 and R=SiMe₃) with α -hydrogen-free nitriles showed that different kinds of addition products such as 1-azaallyl-, β -diketiminato- or 1,3-diazaallyllithium compounds could be yielded.¹⁻⁵ Normally, as a troublesome side reaction, the *N*-lithioimine could add further to molecules of nitrile, leading to aggregate or cyclic products such as pyrimidines and triazines.⁶⁻⁹ However, the triazines were often in limited amount; the mechanism of their formation was sometimes obscure.¹⁰⁻¹¹

In our early investigation it was shown that addition reactions of bis(trimethylsilyl)methyllithium reagent Li[CHR₂] (R = SiMe₃) or 1-azaallyllithium [LiN(R)C(Bu-t)CHR]₂ with cyanoamines R"CN (R" = Me₂N, 1-piperidyl or *p*-pyridyl) ¹² led to β -diketiminatolithium and uniformed or mixed 2,4,6-trisubsituted triazines. However, if other α -hydrogen- free nitriles *e.g.* PhCN or substituted PhCN were used instead of the cyanoamines the triazine products were not observed. Treatment of LiCR₃(thf)₂ (R=SiMe₃) with PhCN afforded the 1-azaallyl [Li{N(R)C(Ph)CR₂}(thf)] other than β -diketiminate or triazine ^{13,14} It is our interesting to renovate the limit of this type reaction by using other lithium analogous such as dimethylaminodimethylsilyl-bis(trimethylsilyl)methyllithium LiCR₂R' (R=SiMe₃, R'=SiMe₂NMe₂). We

proved that the reaction routes involve silicotropic rearrangements from C to N or N to N and an unusual elimination reaction. The paper describes an improved procedure for the preparation of 1,3,5-s-triazine derivatives under mild reaction conditions in context of α -hydrogen-free nitriles and using LiCR₂R' as a catalyst.

RESULTS AND DISCUSSION


The reaction of various α -hydrogen-free nitriles R¹CN (R¹ = Me₂N or 1-piperidyl) with Li[CHR₂] (R=SiMe₃,) in hexane gave symmetrical 2,4,6-(tri)(dimethylamino)-*s*-triazine or 2,4,6-(tri)(1-piperidinyl)-*s*-triazine in good yield (>90%). However, the different interaction of Li[CHR₂] with aromatic nitriles had been reported to give different kinds of addition products such as 1-azaallyl-and β -diketiminato-lithium compounds.¹⁻⁵ But if LiCR₂R', the analogue of Li[CHR₂], was been used instead of Li[CHR₂], the 2,4,6-trisubsituted *s*-triazines (**7-12**) were also obtained (**Scheme 1**).

Scheme 1

In order to investigate the catalyst effect of the lithium reagent, the reaction of $LiCR_2R'$ with excessive α -hydrogen-free nitriles R¹CN (1-6) and *t*-BuCN was studied. High yields of triazine compounds (7-11)

were obtained. Minor product (12) was formed and there were no triazine products produced from the reaction of $\text{LiCR}_2\text{R}'$ and *t*-BuCN. We supposed that the steric effect was the main reason. A proposed mechanism is given in **Scheme 2** as steps i-v: (i) C-C coupling, (ii) silyl migration, (iii) the first time of N-C coupling and silyl group migration, (iv) the second time of N-C coupling and silyl group migration finally an $\text{LiCR}_2\text{R}'$ elimination to give triazines.

Scheme 2 Schematic process of formation of triazine (7-12)

In conclusion, the reaction of organic lithium reagents with various sterically less-hindered α -hydrogen-free nitriles provides a simple and convenient one-pot process from the readily available materials to uniformed and mixed 2,4,6-trisubsituted *s*-triazines in the mild conditions. A new and simple direct synthetic method for s-triazines was supplied from the reaction catalyzed by lithium complex.

EXPERIMENTAL

All manipulations were carried out under argon, using standard Schlenk technique. Solvents (hexane, ether) were distilled from drying agents and degassed with argon prior to use. ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker DKX300 apparatus. Elemental analyses were performed by Vario-III analyzer.

2,4,6-Tri(dimethylamino)-1,3,5-triazine (7).

Dimethyl cyanamide (0.50 mL, 6.00 mmol) was added by syringe to a stirred solution of $[(SiMe_3)_2CSiMe_2NMe_2]Li(TMEDA)$ (1.10 g, 2.89 mmol) in hexane (*ca.* 20 mL) at 0 °C. The mixture was warmed to rt, stirred for 12 h, concentrated and the residue was crystallized from hexane at -30 °C to give white crystalline pure complex (7) (0.38 g, 91%): mp 170-173 °C; ¹H NMR (300 MHz, C₆D₆): δ =3.09 (s, 18H, NMe₂); ¹³C NMR (75 MHz, C₆D₆): δ 36.54 (s, NMe₂), 167.26 (s, *ipso*-C of ring). Anal. Calcd for C₉H₁₈N₆: C, 51.41; H, 8.63; N, 39.97. Found: C, 51.25; H, 8.75; N, 39.14.

2,4,6-Tri(1-piperidinyl)-1,3,5-triazine (8).

[(SiMe₃)₂CSiMe₂NMe₂]Li(TMEDA) (0.12 g, 0.31 mmol) was added to a stirred solution of 1-piperidinecarbonnitrile (0.55 mL, 4.75 mmol) in hexane (*ca.* 15 mL) at the rt. After stirring for 6 h, the solvent was removed in *vacuo*. The residue was dissolved in ether (*ca.* 10 mL) and filtered. The filtrate was concentrated and stored at -30 °C to give colorless crystals (from ether) of compound (**8**) (0.47 g, 89%): mp 215-216 °C; ¹H NMR (300 MHz, CDCl₃): δ 4.43 (s, 12H, NCH₂), 2.25 (m, 18H,CH₂); ¹³C NMR (75 MHz, CDCl₃): δ =165.98 (*ipso*-C of triazine ring), 44.59(*o*-CH₂), 26.37, 25.64 (*m*-CH₂ and *p*-CH₂). Anal. Calcd for C₁₈H₃₀N₆: C, 65.42; H, 9.15; N, 25.43. Found: C, 65.40; H, 9.00; N, 25.17.

2,4,6-Tri(phenyl)-1,3,5-triazine (9).

[(SiMe₃)₂CSiMe₂NMe₂]Li(TMEDA) (0.50 g, 1.31 mmol) was dissolved in hexane (*ca.* 20 mL). PhCN (1.07 g, 10.4 mmol) was injected into the solution at 0 °C and the solution changed into yellow immediately. The mixture was warmed to rt. After overnight reaction, it gave some white or light yellow precipitate. The solvent was removed in *vacuo*. The remained solid was dissolved in ether (*ca.* 10 mL) and filtered. The filtrate was concentrated and stored at -30 °C to give pure colorless crystalline (from ether) triphenyltriazine (**9**) (0.97 g, 91%): mp 234-235 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.86 (d, J=6.9 Hz, 6H, *o*-CH), 7.67 (m, 9H, *m*- and *p*-CH); ¹³C NMR (75 MHz, CDCl₃): δ 172.63 (*ipso*-C of triazine ring), 137.23 (*ipso*-C of phenyl), 133.46 (*o*-CH), 129.93, 129.60 (*m*-CH and *p*-CH). Anal. Calcd for C₂₁H₁₅N₃: C, 81.55; H, 4.85; N 13.59. Found: C, 81.52; H, 4.83; N, 13.69.

2,4,6-Tri(*m*-tolyl)-1,3,5-triazine (10).

[(SiMe₃)₂CSiMe₂NMe₂]Li(TMEDA) (0.23 g, 0.6 mmol) was dissolved in hexane (*ca.* 20 mL). *m*-Tolunitrile (0.70 g, 6.0 mmol) was injected into the solution at 0 °C. The mixture was warmed to rt. for further reaction. After overnight reaction, some light yellow precipitate were formed. The solvent was then removed in *vacuo*. The remaining solid was dissolved in ether (*ca.* 10 mL) and filtered. The filtrate was concentrated and stored at -30 °C to give light yellow product (from ether) (**10**) (0.69 g, 98%): mp 146-147 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.60 (s, 6H, phenyl), 7.49 (m, 6H, phenyl), 2.56 (s, 9H; *m*-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 172.64 (*ipso*-C of triazine ring), 139.25, 137.23 (*ipso*-C of phenyl), 134.24, 130.37, 129.50, 127.19 (CH of phenyl), 22.57 (CH₃). Anal. Calcd for C₂₁H₂₁N₃: C, 82.05; H, 5.98; N 11.96. Found: C, 81.83; H, 6.19; N, 11.81.

2,4,6-Tri(*p*-tolyl)-1,3,5-triazine (11).

p-Tolunitrile (0.86 g, 7.31 mmol) was injected into the solution of $[(SiMe_3)_2CSiMe_2NMe_2]Li(TMEDA)$ (0.36 g, 0.94 mmol) in hexane (*ca.* 20 mL). Some light yellow precipitate were formed. The solvent was removed in *vacuo*. The remained solid was dissolved in ether (*ca.* 10 mL) and filtered. The filtrate was concentrated and stored at –30 °C to give pure light yellow product (from ether) (**11**) (0.82 g, 96%): mp 283-285 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.55 (d, J=9.0 Hz, 6H; *o*-CH of phenyl), 7.25 (t, J=9.0 Hz, 6H; *m*-CH of pheny), 2.42 (s, 9H; *p*-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 172.65 (*ipso*-C of triazine ring), 143.71, 139.30 (*ipso*-C of phenyl), 132.05, 129.84 (CH of phenyl), 21.85 (CH₃). Anal. Calcd for C₂₁H₂₁N₃: C, 82.05; H, 5.98; N 11.96. Found: C, 82.04; H, 6.02; N, 11.94.

2,4,6-Tri(*o*-tolyl)- 1,3,5-triazine (12).

[(SiMe₃)₂CSiMe₂NMe₂]Li(TMEDA) (0.44 g, 1.15 mmol) was dissolved in hexane (ca. 20 mL). *o*-Tolunitrile (1.20 g, 10.24 mmol) was injected into the solution at 0 °C. The mixture was warmed to rt and reacted overnight. Some light yellow precipitate were formed. The solvent was then removed in *vacuo*. The remaining solid was dissolved in ether (*ca*. 10 mL) and filtered. The filtrate was concentrated and stored at -30 °C to give pure light yellow product (from ether) (**12**) (0.23 g, 19%): mp 110-111°C; ¹H NMR (300 MHz, CDCl₃): δ 7.90-7.32 (m, 12H; phenyl), 2.61-2.45 (m, 9H; *o*-Me); ¹³C NMR (75 MHz, CDCl₃): δ 175.50 (*ipso*-C of triazine ring), 142.90, 138.81 (*ipso*-C of phenyl), 133.59, 131.57,130.98,129.76,128.76 (CH of phenyl), 21.42 (CH₃). Anal. Calcd for C₂₁H₂₁N₃: C, 82.05; H, 5.98; N 11.96. Found: C, 81.95; H, 5.89; N, 12.05.

ACKNOWLEDGEMENTS

This work was supported by Natural Science Foundation of China (20472046, D-S.L.) and Science Foundation of Shanxi Province (20051011, Xia Chen).

REFERENCES

- 1. P. B. Hitchcock, M. F. Lappert, and D. S. Liu, J. Chem. Soc., Chem. Commun., 1994, 1699.
- 2. P. B. Hitchcock, M. F. Lappert, and D. S. Liu, J. Chem. Soc., Chem. Commun., 1994, 2637.
- 3. P. B. Hitchcock, M. F. Lappert, D. S. Liu, and E. J. Ryan, Polyhedron, 1995, 14, 2745.
- 4. P. B. Hitchcock, M. F. Lappert, and M. Layh, Chem. Commun., 1998, 201.
- 5. M. F. Lappert and M. Layh, Tetrahedron Lett., 1998, 39, 4745.
- 6. P. L. Compagnon and M. Miocque, Ann. Chim. (France), 1970, 5, 23.
- 7. R. M. Anker and A. H. Cook, J. Chem. Soc., 1941, 323.

- 8. L. O. Moore, J. Org. Chem., 1966, 31, 3910.
- D. J. Berry and B. J. Wakefield, J. Chem. Soc. (C), 1971, 642; D. J. Berry, J. D. Cook, and B. J.
 Wakefield, J. Chem. Soc., Perkin Trans. I, 1972, 2190.
- 10. L. S. Cook and B. J. Wakefield, Tetrahedron Lett., 1976, 147.
- 11. L. S. Cook and B. J. Wakefield, J. Chem. Soc., Perkin Trans. I, 1980, 2392.
- 12. X. Chen, C.-X. Du, J.-P. Guo, X.-H. Wei, and D.-S.Liu, J. Organomet. Chem., 2002, 655, 89.
- 13. P. B. Hitchcock, M. F. Lappert, and M. Layh, Inorg. Chim. Acta, 1998, 269, 181.
- 14. P. B. Hitchcock, M. F. Lappert, and M. Layh, Tetrahedron Lett., 1998, 39, 4745.